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The mechanics of an organized wave 
in turbulent shear flow 

By A. K. M. F. HUSSAIN AND W. C. REYNOLDS 
Department of Mechanical Engineering, Stanford University 

(Received 2 September 1969) 

Some preliminary results on the behaviour of controlled wave disturbances 
introduced artificially into turbulent channel flow are reported. Weak plane- 
wave disturbances are introduced by vibrating ribbons near each wall. The 
amplitude and relative phase of the streamwise component of the induced wave 
is educed from a hot wire signal, allowing the wave speed and attenuation charac- 
teristics and the wave shape to be traced downstream. The normal component 
and wave Reynolds stress have been inferred from these data. It appears that 
Orr-Sommerfeld theories attempted to date are inadequate for description of 
these waves. 

1. Introduction 
There is considerable current interest in the possibility of representing shear 

flow turbulence as a random superposition of appropriate characteristic waves. 
Two distinct but related views have been suggested. In  Lumley’s (1967) ortho- 
gonal decomposition the waves are effectively marginally stable and strongly 
coupled through their non-linear interactions. In  contrast, Landahl’s (1967) 
wave representation involves waves that are born at some location and decay 
as they proceed downstream. Landahl’s waves might be viewed as the Fourier 
components of Lumley’s (1967) characteristic eddies. Which representation is 
the more useful remains to be determined. However, a satisfactory closed equa- 
tion system for the wave eigenfunctions has not yet been found in either case, 
and, as Landahl suggests, experiments are sorely needed at  this point. The 
primary objective of the present work is the acquisition of appropriate data 
and the continued development of these ideas. 

There are two basic ways to approach the experimental problem. One can 
attempt to deduce the nature of the eigenfunctions from appropriate two-point 
correlation data (Lumley 1967; Bakewell & Lumley 1967; Morrison & Kronauer 
1968). Alternatively, one can seek the same result by systematic controlled 
perturbations of the basic turbulent shear flows. Indeed, a considerable body of 
data on the closelyrelated problem of turbulent shear flow over a waving boundary 
is just becoming available (Kendall, private communication; Stewart, private 
communication). Such studies treat boundary-value problems involving the 
wave eigenfunctions. Another approach is to introduce the controlled disturbance 
within the fluid at some point, and then to study the behaviour of this disturbance 
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downstream. This initial-value problem leads one directly to decaying eigenmodes 
of the Landahl type. The present paper describes initial output from just, such 
an experiment. 

With this background of motivation, let us now turn to the simple problem 
of the behaviour of an organized wave in it turbulent shear flow. We can imagine 
the wave as being introduced by an upstream wave-maker. We can use the cyclic 
position of the wave-maker as a clock for selective sampling, which permits us 

f 

I 1 

FIGURE 1. The time and phase averages of a random signal with a weak organized wave. 
Sketch shows the procedure for obtaining phase average of the signal (upper curve) at 
phase 4 of the reference signal (lower curve). Time average 5 p ,  phase average (f) = 
1 +f. 

to extract the (weak) organized wave motion from a background field of finite 
turbulent fluctuations. In  the presence of such travelling waves, we can decom- 
pose any fluctuating quantity f (x, t )  as (figure 1 )  

f (x, t )  = fw +jb, t )  +f’k t ) ;  (1.1) 

f is the mean value, f the (statistical) contribution of the organized wave, and f‘ 
the turbulence. The time average is 

we also define the phase average as 
1 N  

( f ( x , t  )) = lim - C f(x, t + n T ) ,  
N+m N n=O 

where T is the period of the wave (wave-maker). The phase average is then t,he 
average, at  any point in space, of the values off that are realized at  a particular 
phase I$ in the cycle of the wave-maker. The wave component f is then 

(1.3) 

J =  G>-J (1.4) 
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Hence, given a signal f ( t )  at some particular location, and given a reference 
signal oscillating at the wave frequency (the wave-maker displacement), the 
three components off can be determined by appropriate signal analysis. Some 
useful properties that follow from the basic definitions are given below. 

The last of these states that, on the average, the background turbulence and the 
organized motion are uncorrelated. 

One can proceed by suitable manipulation with the Navier-Stokes equations 
to obtain equations governing $, P for a particular wave (Phillips 1967). These 
equations are not closed, for they contain terms involving the oscillations 
(i&) in the Reynolds stresses of the background turbulence, 

~ 

Fij = (u; u') 3 - u! a 3  uf.. (1.6) 
This lack of closure necessitates an empirical closure of some sort. Experiments 
hopefully will provide the basis for a satisfactory closure assumption. 

In  this paper we shall describe the apparatus used for our experiments in some 
detail, document the basic flow, present certain preliminary wave results, and 
report without documentation the outcome of a few attempts to predict the 
wave structure with various closure assumptions. More detailed data and analysis 
will follow in subsequent publications. 

2. Experimental apparatus 
Theoretical models cope most readily with parallel flows; hence a two-dimen- 

sional channel flow forms the basis for our experiments. A schematic of the channel 
is shown in figure 2.t Previous channel experiments (Laufer 1951; Comte-Bellot 
1963; Clark 1968) indicated clearly that a very long flow length was necessary 
to achieve full development of the Reynolds stress profiles. Believing that this is 
due in part to the persistence of large eddies originating upstream of the channel, 
special care has been taken to prevent large-scale motions from entering the 
channel, early development of the mean field has been assisted, and a long 
region is provided for development of the turbulence field. 

The gap width is 2.5 in., and the channel cross section has an aspect ratio of 
18: 1 and a length/gap ratio of 230: 1. 

The entrance section is fabricated from heavy plywood with wood bracings 
and metal end spacers. Distortions in the entrance region due to temperature 
and humidity-sensitive warpage are less than k0.025in. on the local gap, 
and the entire surface is hydraulically smooth. The primary test section wall 
has an unpenetrated surface of smooth formica on a rigid particle board base, 
and is flat to within 0.005 in. The opposing wall is wood-braced lucite, and 
remains flat to within & 0.005 in. Instrumentation and wall pressure taps 
are passed through the lucite side wall, whioh permits ready observation for 
probe location purposes. The channel operates at  a pressure slightly above 

-t See Hussain (1970) for more detail. 
16-2 
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atmospheric, with blown air supplied from a large filtering plenum (98% 
retention to 0-7 p ) .  A screen minimizes disturbance reflexions where the test 
section discharges into the laboratory. Excitation through mechanical vibration 
is suppressed. Flow pulsations are minimized through use of a constant-speed 
motor, a lightly loaded blower, and a high series flow resistance. 
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FIGURE 2. The channel. A: flexible rubber connexion. Circles denote probe survey stations. 

The controlled disturbance is introduced by two vibrating ribbons on the 
opposing walls at the start of the test section. The ribbons are stretched vertically 
across the span of the flow, and carry sinusoidal current in the presence of stea,dy 
d.c. magnetic fields produced by electromagnets outside of the flow. The 1% in. 
wide, 0.0035 in. thick, spring phosphor bronze ribbons are placed in tension 
which is adjusted to  match their natural frequencies away from operating 
frequencies. They are located approximately & in. from the walls. The ribbon 
current and magnet voltage are manually controlled to maintain fixed vibration 
amplitude within 5 %. Stroboscopic observations confirm that the ribbons 
vibrate smoothly in a flutter free, torsion free cosine-like mode, with the maxi- 
mum amplitude of about & in. on the centre height of the channel. Hence, on 
the centreline the induced disturbance is essentially two-dimensional. The 
ribbons can be vibrated in the same direction at  the same time, introducing a 
symmetric disturbance to the velocity component B normal to the walls, or in 
opposite phase (antisymmetric v" disturbance). The disturbance velocities 
which can be introduced by the ribbons are typically less than 1 yo of the back- 
ground turbulence. The instrumentation required for detection of this dis- 
turbance will be described following a documentation of the basic shear flow. 
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3. The basic flow 
The wave experiments are performed at a channel Reynolds number (based 

on channel half-width 6 and centreline velocity U,) of approximately 13,800. 
At higher speeds ribbon flutter prevents proper oscillation. Basic flow data 
(with ribbons removed) have been obtained at this and higher Reynolds numbers 
for the purpose of apparatus qualification and flow documentation. 

Mean velocity profiles were obtained with a total head probe made from 
0.025 in. OD tubing (0.0025 in. wall thickness) flattened to an opening of 0.006 in. 
This probe was calibrated against a keil probe and was found to have a yaw 
plateau of _+ 10'. No turbulence or wall proximity corrections have been made. 
Static pressures were obtained from wall taps, and have not been corrected for 
turbulence-induced cross-stream pressure variations. The axial pressure gradient 
is measured by similar pressure taps located at  intervals along the centre height 
of the channel. The wall shear stresses I-, on the channel centre height are deduced 
from this axial pressure gradient using the integrated momentum equation, 
which gives 

7, = 

The fluid properties are determined 
perature, and ambient humidity. 

dP 
ax -S-. 

as functions of the static pressure, tem- 

Spanwise surveys showed that the basic flow is two-dimensional over the 
central 70% (32 in.) of the span. Surveys with and without the ribbon at 
Re = 13,800 also showed no measurable effect of the ribbons (vibrating or 
stationary) on the mean velocity profile in the region of wave surveys. 

Figure 3 shows the friction velocity u, = 2j(r,/p) over a wide Reynolds number 
range. Clark's (1968) data and correlation are also shown for comparison. Our 
data lie slightly above Clark's correlation, but extrapolate logarithmically 
better to the high Reynolds number data of Comte-Bellot (1963). The discrep- 
ancies between the basic flows in these and other channels are discussed in more 
detail by Hussain (1970). Wave data and additional basic flow data were ob- 
tained using a Thermosystems linearized temperature-compensated constant 
temperature hot wire anemometer system. The wires are 0.0002 in. dia., platinum, 
nominally & in. long, soldered to a standard Thermosystems probe with needles 
projecting into the flow 8 in. ahead of the 4 in. dia. probe stem. The wires were 
calibrated against a total head probe on the channel centreline in the fully 
developed turbulent channel flow. Turbulence effects are small ( M 2 %), and no 
turbulence correction was made. An integrating digital voltmeter was used to 
obtain stable signal averages. Spectra were obtained with a Quantech analyzer 
using a 10 Hz bandwidth over the range 30-5000 Ha. 

The mean pressure distribution along the channel centre height is linear 
(figure 4), indicating the rapid development of the mean field. 

Figure 5 shows the mean velocity profile at Re = 13,800 in the conventional 
wall layer co-ordinates. No wall proximity corrections or position shifts have 
been incorporated. The agreement between the pitot and hot wire profiles is 
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FIGURE 3. Relation between friction velocity and centreline velocity. Re, = u70S/v, 
Re = U,S/v. ---, best fit for Clark channel; m, Laufer channel; A, Comte-Bellot channel; 
0 ,  Re = 13,800. 
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FIUUFLE 4. Streamwise mean pressure distribution on centre height at  Re = 13,800. 

excellent over the region where both techniques are accurate. This profile is 
in good agreement with Coles’ (1956) form of the log law, though it lies below 
channel profiles of Laufer (1951) and Clark (1968) at  comparable Reynolds 
numbers. 
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FIGURE 6. Streamwise turbulence intensity, Re = 13,800; --, Laufer pipe, Re = 50,000; 
--_ , Laufer channel, Re = 30,800; --, Clark channel, Re = 15,200. Both top scales 
correspond t o  the present experiment. Laufer channel data correspond to y/S only, and 
Clark channel and Laufer pipe (radius = 6) to y+ values only. 
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Figure 6 shows the r.m.s. streamwise fluctuation 1/u7 distribution a t  
Re = 13,800. Laufer’s channel (1951) and pipe (1954) data and Clark’s chennel 
(1968) data at comparable Reynolds numbers are shown for comparison. 

spectra (figure 7)  show no influence of the blower wheel (30Hz), 
blade (240 Hz) or a.c. supply (60 Hz) on the developed turbulent structure. 
For further flow documentation, and considerable basic flow data at other 
Reynolds numbers, see Hussain (1970). 

The 
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FIGURE 7. Frequency spectra of 2 2  at  Re = 13,800. 10 Hz bandwidth. 
a, y/6 = 0.040; 0, y/6 = 1.0. 

4. Signal analysis apparatus 
The linearized hot wire signal was processed electronically to recover the mean, 

wave, and r.m.s. turbulence components for streamwise fluctuations. The basic 
element in the system (figure 8) in a Princeton Applied Research (PAR) wave 
form eduetor. Given a suitable periodic reference signal (the sinusoidal ribbon 
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voltage in the present experiment), this device samples the hot wire signal at 
100 points sequentially in each cycle of the reference signal, repeats this se- 
quential sampling in each successive cycle of the reference signal, and thereby 
essentially obtains an average over a very large ensemble of wave cycles. An 
ensemble size of 50,000 to 100,000 was necessary in these experiments. This 
provides the first stage of detection of the very weak wave component from the 

Anemometer signal 

fundamental of 
educted signal 

FIGURE 8. Schematic diagram of the analogue system for signal processing. Upper scope 
trace shows educed waveform, lower shows reference. K = 20-50. 

FIGURE 9. Educted signal (upper) and reference signal (lower). The hot wire signal totally 
masks the weak wave and is not shown. (a) y/8 = 0.12, wave amplitude = 0.067 ft./sec, 
phase = 150'. ( 6 )  y/S = 0.32, wave amplitude = 0.0266 ft./sec, phase = -24". 

relatively high amplitude turbulent noise. The educed waveform can be displayed 
on an oscilloscope (figure 9) and still contains some noise. Further noise rejection 
is obtained by processing the display signal through a PAR lock-in amplifier 
(LIA). This device detects the amplitude and phase of a sinusoidal signal buried 
in noise by maximizing the quadrature against a phase-shifted sinusoidal signal 
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at the reference frequency. These quantities are checked visually against the 
eductor trace on the scope. Because of the first stage noise rejection, the LIA 
looks at  a relatively noise-free signal, and the necessary manual adjustments 
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FIGURE 10. R.m.s. wave amplitude at 100 He, Re = 13,800. 0, x/& = 4; 

0, x /S  = 6 ;  A, x / 6  = 8 ;  +, = 10; a, x/& = 12. 

can be made in a. very few seconds (after a period of about 20-30 min. for satis- 
factory eduction). Hence, in toto we obtain a picture of the waveform, and the 
amplitude and phase (relative to the ribbon voltage) of its fundamental com- 
ponent. The survey across the flow is repeated downstream from the ribbon at  
intervals of one channel width for as far as the signal can be detected. 
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5. Wave data and analysis 
To date, data have been obtained at  frequencies of 25, 50, 75  and 100 Hz, 

with the ribbons vibrating to produce a symmetric v" disturbance, which makes 
the streamwise disturbance (4) antisymmetric. Indeed, surveys acrow the channel 
centreline verified the antisymmetry of the 4 osicllations. The 25 and 50 Hz 

/ 

270" 

data appear to contain more than a single predominant eigenmode (the wave- 
form is not very well preserved in the streamwise direction). The 100 Hz data 
most closely resemble excitation of a pure wave eigenmode, and we discuss 
only the 100 Hz data in this paper. All measurements reported here have been 
taken along the centre height of the channel. For other data, see Hussain (1970). 

Figure 10 shows the distribution of the amplitude of the .ii oscillation at  
several streamwise stations. The very small values of the amplitude emphasize 
the difficulty in detecting the organized wave and the need for a very large 
ensemble of wave oscillations. There appears to be a 180' phase reversal at a 
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point away from the wall, and in figure 10 we show zero Q to infer the phase 
reversal point. Where the amplitude is small, the phase uncertainty is very 
high. The uncertainty in amplitude is constant at all amplitudes, and hence is 
percentagewise substantial where the amplitude is small. The exact crossing 
point is therefore very difficult to define, and our best estimates are shown. 
Figure 11 shows the typical phase uncertainty distribution, and figure 12 
the phase distribution at  different stations. 

270" 

FIGURE 12. Wave phase at 100 Hz. Symbols same as figure 10. 

Within these uncertainties, it remains clear that the waveform is not com- 
pletely preserved, suggesting that the initial disturbance induced by the ribbon 
excites more than one of the wave eigenmodes corresponding to the excitation 
frequency. Figure 13 shows the decay in amplitude of the two peaks in the am- 
plitude distribution and the amplitude change a t  two fixed positions away from 
the wall. 

The phase data are not sufficiently accurate or complete to permit determina- 
tion of the direction of the phase jump. Solutions of the inviscid Orr-Sommerfeld 
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equation show an increase in arg (C) of 71 at the critical layer, and hence we 
have drawn the phase curves counterclockwise at  the phase jump. 

A proper analysis of this data will require consideration of the multiple mode 
characteristics of the disturbance. Nevertheless, there is considerable interest 
in the results of a coarser analysis based on treatment of the disturbance as 
constituted by a single eigenmode. Let us suppose that the disturbance represents 
such a single mode and is of sufficiently small amplitude to be treated by linear 
theory. The two-dimensional disturbance velocities may then be written as 

3 = t{Q(y)ei@-ct) +- Q*(y)e- ia'(x-c*t)h (5.1) 

Here * denotes a complex conjugate, Q = (&a) is the eigenmode shape, 
a = a, + &xi the (complex) wave-number, a, the spatial wave-number and a$ 
the spatial growth-factor, and c the wave speed. For convenience we treat all 
quantities as normalized on the mean velocity at the channel centreline (U,) 
and the channel half-width (6). Alternatively, we may put 

fi = +{fi(y) ei(ax-wt) +- conjg), (5.2) 

where o is the (real) oscillation frequency. Within the approximations mentioned 
above, the data provide estimations of a, w, c and C(y). The continuity equation 
for two-dimensional waves becomes 

do 
i a d + -  = 0, 

dY 
(5.3) 

from which the cross-stream component v" can be calculated. This function is 
presumably the eigenfunction of an Orr-Sommerfeld-like equation containing 
(as yet unknown) terms accounting in a proper manner for the effect of the pro- 
pagating wave oscillations on the background Reynolds stresses. Of additional 
interest is the Reynolds stress of the organized wave, 

- 
-GV" = -*(.lio*+d*o). (5.4) 

This can be obtained once 0 has been calculated. 

measured oscillation amplitudes at two streamwise stations x1 and x2, using 
Starting with (5.2), one may easily show that ai can be deduced from the 

If the wave-shape is preserved, it does not matters at  what y position the ampli- 
tudes are determined. Some variation in ai is obtained from the data of figure 13, 
depending on the point y chosen. A reasonable average is 

a, = 0.27. 

Again starting with (5 .2 ) ,  denoting the measured phases of .ii: (relative to the 
wave-maker reference) at (xl, y) and (z2, y )  by $1 and &, one finds that 

$z - $1 a,=-. 
X 2 - %  
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Here more interpretation is required. Inspection of the lower frequency data 
suggests that the phase difference per survey station (per gap width) is about 

a, = 3.7, 
430'. This yields 

corresponding to a wavelength of about 2.1 in. The centreline velocity at  
Re = 13,800 is 21.9 ft./sec, so the dimensionless frequency at  f = 100 Hz is 

w = 27Tfs/Uo = 3.0. 

Hence, the normalized wave-speed is 

c = w / a  = 0.81 - i0*02.  

FIGURE 13. Spatial decay of amplitude. 0, peak near wall; a, outer peak; 
+, y/S = 0.1; x , y/S = 0.4; Re = 13,500, m = 100 Hz. 

The 6 distribution has been calculated by numerical integration, using (5.3) 
and smoothed data for ti at each survey station. The amplitude and phase dis- 
tribution of the calculated i? distribution are shown in figure 14 and figure 15. 
The spatial decay rate of v" at  its peak and at constant distance from the wall is 
shown in figure 16. The decay rate is comparable with that of ti. Normalization 
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on the centreline value of v" was frustrated by the inaccuracy in the phase data at  
that point, and hence we show the 6 amplitude and phase at  each station as 
computed from the interpreted .ii data. Note that the five profiles are of generally 
similar shape, and that at  the last three stations the curves are quite similar in 
both amplitude and phase. These three curves might be interpreted as arising 
from the fundamental wave eigenmode, which should have an eigenvalue of about 
a = 3-7 + 0.27i at  w = 3.0, Re = 13,800. With some reservation we offer this as a, 

Y l S  
FIGURE 14. Calculated r.m.s. 6 distribution. Symbols same as figure 10. 

target for Om-Sommerfeld analysis in turbulent shear flows. It is clear that the 
peaks in E and v", and the cross-over point in ii move away from the wall pro- 
gressively with downstream stations. The drift of the disturbances away from 
the wall is shown in figure 17. 

The Reynolds stress distributions computed as described above are shown 
in figure 18. There is considerable uncertainty in the shape of these curves arising 
from the interpretation of arg (a) and this is reflected in the differences between 
the five curves. These distributions should not be taken very seriously at present, 
and we include them simply for completeness. 

Calculations based on the Orr-Sommerfeld equation and a similar equation 
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modified to include the oscillations in the background Reynolds stresses 
through the basic flow eddy viscosity have been carried out for the experimental 
mean profile. The numerical methods (Lee & Reynolds 1967) and the eddy vis- 
cosity profile used (Reynolds & Tiederman 1967) are described elsewhere. Neither 
model is at  all successful in predicting @ as interpreted above. The quasi-laminar 
model (F4:ij = 0) shows too many peaks, and the model based on the variable mean 
eddy viscosity does not show the two peaks. The eigenvalues are relatively 

180" 

t-i 9 0  

/ 

/ 

FIGURE 15. Calculated 6 phase. Symbols same as figure 10. 

similar, with that for the eddy viscosity model being somewhat closer to the 
experimental value. In  particular, the trends of wave speed with frequency are 
incorrectly predicted by the quasilaminar model, while the eddy viscosity model 
at least gives the correct trends. It is clear that neither is suitable, and that more 
fundamental work on the theory, as well as further experimentation, is required. 

This work was supported by the National Science Foundation and the U.S. 
Air Force Office of Scientific Research. 
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FIGURE 18. Calculated Reynolds stress distribution. Symbols same as figure 10. 
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